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LE'ITER TO THE EDITOR 

Heuristic approach to critical phenomena 

C J Thompson 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 3 February 1976 

Abstract. A simple heuristic argument based on the method of dimensions is used to derive 
the formula 

d s 4  

for the correlation length exponent of a scalar field Ising-type model. 

One of the most fascinating problems in the field of critical phenomena concerns the 
nature of the critical point where a phase transition takes place. This point is usually 
characterized by critical exponents specifying the nature of the singularities in ther- 
modynamic quantities. The problem is to calculate these exponents for real and model 
systems. 

In a few exceptional cases, most notably the two-dimensional king model (Thomp- 
son 1972) and the spherical model (Joyce 1973), critical exponents are known exactly. 
In other cases one must resort to approximate schemes. Analysis of systematic high- 
and low-temperature expansions (Domb and Green 1974) for various model systems 
has led to reasonably accurate estimates for critical exponents. Closed form approxi- 
mations (Burley 1973) on the other hand typically led to incorrect estimates. 
Renormalization group methods (Wilson and Kogut 1974) developed in recent years 
have given new life to the problem by providing a difierent point of view and alternative 
approximation schemes which, on the face of it, provide very accurate values for Critical 
exponents. Still the problem remains of isolating the important parameters on which 
critical exponents depend and determining the precise form of the dependence on such 
parameters. Our aim here is to present a simple heuristic argument, based on the 
method of dimensions, which leads to precise formulae for critical exponents. 

We begin with the so-called Landau-Ginsburg-Wilson Hamiltonian, or free energy 
.% defmed by (Wilson 1974) 

9= J [(Vn/r)2+n(L)M2+ u(L)@] dx (0 

where M = M(x)  is a scalar field and the integration extends over some d dimensional 
volume. The coefficients r(L) and U&) may depend on temperature but will be 
assumed to be finite and positive at the critical temperature T,. 7 defined by 

T = ( T -  T,)/T, (3 
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measures the temperature deviation from the critical point and the parameter L, which 
forms the basis of our dimensional argument, may be thought of as a wavelength cut-off. 
(A similar interpretation is given in renormalization group arguments.) 

In the Landau picture the equilibrium magnetization satisfies 

M; = r(L)/u(L) 

and the correlation length 6 is given by 

(4) 

6 = [ f l g ) ] - l b  p i 2 < L  (r>O! (5) 

where tL may be interpreted as a kind of coherence Iength resulting from fluctuations 
with wavelength up to L. Since nc account is taken of fluctuations in Landau's picture, 
Mi m d  & are anstants and hence (3) and (5) lead immediately to the classical critical 
exposens B = f for the magnetization and v = $ for the correlation length. 

In the renamalization group approach applied to (1) (Wilson 1974) fluctuations are 
taken into a c " t  by performing statistical averages over wavelengths between L and 
L+SL, thereby deriving approximate differential equations for r(L) and u(L). It is 
assmed that all important fluctuations for critical behaviour will be taken into account 
when L = 6. From (5) one then obtains the self-consistent equation for 6, 

6 = [.n([)]-ii2. (6) 

Integrating the renormalization group equations determines r(L), and hence from (6) ,  
the critical exponent U defined by 

6 - 7- asr+O+. (7) 

As an alternative to the renormalization group prescription we use a dimensional 
argument to determine the dependence of r(L) on L. The exponent v is then obtained 
from (6) aad (7). 

Our argument depends on the following assumptions. 
(A) When the integral in (1) is takec over the cube Ld in d dimensions, the three 

terms separately in (1) are all of order unity. 
(E) r(L) and u(L) are finite in the limit L +CO. 
(9 The fluctuating part of the free energy, defined by (16) over the cube Ld is of 

order tLd, where tL is defined by (5). 
Assumption (A! essentially amounts Po a definition of L and, with assumption (B), 

avoids divergences in the limit L+m.  Assumption (C) is the usual assumption 
underl$ng the scaling Law (21) (Wkbm 1974). The only difficulty here is to define what 
is meant t y  the fluctu2ting part of the free energy. 

Granted these assumptions, we obtain for the three terms in (1) using (A): 

1 (V1M)2dx-LG-Zfi2-1 
*Ld 

so that the 'mean value' behaves as 
M2 - L 2 - d .  
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For the second term in (1) we have 

so that from (9) 
n(L>L2 - 1. 

For the third term we have 

dx - U(L)Ld@ - 1 
JLd 

so that from (9)  and assumption (B) 
d s 4  
d 3 4 ‘  

Clearly equation (13) singles out d = 4 as a special dimension above which exponents 
become classical (just as for the renormalization group picture). From (9)  d = 2 may 
also be special and in both cases logarithmic terms can be expected to play a role. Note 
also that when we set L = 5 in (1 1) we obtain the renormalization group recipe (6). 

To employ assumption (C) we argue as follows. From (3) and (4),  m defined by 

m2 = M’/M; (14) 
may be thought of as a measure of the fluctuations in the magnetization. In terms of m, 
we obtain, for a cube L d ,  

where 

f = I [(Vm)’+ n(L)m2 + r(L)m43 dx. (16) 
L 

We interpret f as the fluctuatingpart of the free energy so assumption (C) requires that 

f- 5Ed= [r(L)]? (17) 

~ - [ ~ ( L ) ] ‘ ~ + ~ ’ / ~ / u ( L )  - 1 (18) 

Combining (17) with assumption .(A) then gives 

and from (13) we obtain 

Solving (6)  for 5 then gives, from (7), our main result, 

( 4  d 2 4 .  
The results for d = 1 (no phase transition) and for d = 2, giving v = 1, are certainly 
correct if one accepts the claim that ( 1 )  has Ising-like critical behaviour. For d = 3 ,  (20) 
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gives v = 5 / $  which is on somewhat shaky grounds unless one accepts the specific heat 
exponent estimate a = 1/$ and the scaling law 

dv=2-a  (21) 

which may or may not be valid in three dimensions. It will be noted, however, that (21) 
been incorporated in assumption (C) so the result for d = 3 is at least consistent. 

The result v = 4 for d 34 is in agreement with renormalization group arguments. In 
addition, if one expands (20) for d < 4 in powers of E = 4 -d, one obtains agreement to 
order E with the renormalization group E expansicn. The order e2  term, however, 
disagrees with more relined renormalization group calculations (Wilson and Kogurt 
1974). 

Note also that since .f is obtained by setting L = .f in (1 l), one might expect that the 
(spontaneous) magnetization should also be obtained by setting L = 5 in (9). This leads 
to the relation 

2/3=(d-2)v (d c 4 )  (22) 
which, interestingly enough, is valid for the spherical model, but apparently not correct 
in two dimensions if one believes that (1) should have Ising-like exponents. Equation 
(22) does, however, give the accepted value /3 = 5/16 in three dimensions (from (20)) 
and also agrees with the E expansion to order E. 

The above argument can be easily extended to power law potentials of the form 
and to higher order critical points by considering, in place of (l), the mimic free 

(23) 

r - (d+d  

energy 

9= I [(Vu//'M)*+ 77(L)M2+ Uk(L)MZk] dx. 

Making the same assumptions (A), (B) and (C) above, one easily obtains 
a2 -Lu-d 

3 

n(L)L" - 1 
and 

in place of (9), (11) and (13) respectively. The coherence length tL now becomes 

(27) = [r (~) ] - ' /"  

and the appropriate change of variables to obtain the fluctuating part of the free energy 
is 

(2 8) 
in place of (14). 

m' = M2(Uk/r)'/k-' 

Repeating the argument from (16) to (20) results in the formula 

U+(k- l)d k a  d<- 
(k-l)o[2d-a] k - 1  
1 k a  d>- 
U k - 1  
- 
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and from (24) on setting L = .$ the relation 

2p = (d - (T)V (30) 

in place of (22). 
In the special case of nearest-neighbour type interactions, (T = 2, the expansion of 

(29) and (30) in powers of ~=[2k/ (k- l ) l -d  again agrees, to leading order, with 
renormalization group calculations (Chang et a1 1974). 

Although our resuits may be fortuitous it is encouraging that our simple argument, 
which is of course by no means rigorous, gives exponents that are in agreement with 
known and estimated values for Ising-like models. We have not succeeded in extending 
the argument to n-vector like models, and it may very well be that such a simple 
dimensional argument is limited to scalar fields. 

Finally it is a pleasure to thank numerous friends and colleagues for their patience, 
'encouragement and healthy pessimism. In this regard I am particularly grateful to 
J Glimm, M Kac, J Lebowitz, T Matsubara, 0 Penrose and E R Smith. 
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